
g

nal

ing,
all
ay

f

Mathcad Users Guide.book Page 301 Sunday, August 9, 1998 2:59 PM
Chapter 15
Programming

Pro With Mathcad Professional, you can write your own programs usin
specialized programming operators. A Mathcad program has many
attributes associated with programming languages including conditio
branching, looping constructs, local scoping of variables, error handl
the ability to use other programs as subroutines, and the ability to c
itself recursively. Mathcad programs make it easy to do tasks that m
be impossible or inconvenient to do in any other way.

This chapter contains the following sections:

Defining a program
How to create simple programs using local assignment statements.

Conditional statements
Using a condition to suppress execution of a statement.

Looping
Using while and for loops to control iteration.

Controlling program execution
Using the break , continue , and return statements to modify the execution o
a loop or an entire program.

Error handling
Using the on error statement to trap errors and the error string function to
issue error tips.

Programs within programs
Using subroutines and recursion in a Mathcad program.
Pro 301

any
ar,

ion:

us-
e local

Mathcad Users Guide.book Page 302 Sunday, August 9, 1998 2:59 PM
Defining a program

A Mathcad program is a special kind of Mathcad expression you can
create in Mathcad Professional—it’s an expression made up of a
sequence of statements created using programming operators, avail-

able on the Programming toolbar. Click on the Math toolbar, or
choose Toolbars⇒⇒⇒⇒Programming from the View menu, to open the
Programming toolbar.

You can think of a program as a compound expression that involves potentially m
programming operators. Like any expression, a program returns a value—a scal
vector, array, nested array, or string—when followed by the equal sign or the live
symbolic equal sign. Just as you can define a variable or function in terms of an
expression, you can also define either in terms of a program.

The following example shows how to make a simple program to define the funct

Although the example chosen is simple enough not to require programming, it ill
trates how to separate the statements making up the program and how to use th
assignment operator, “←.”

■ Type the left side of the function definition,
followed by a “:= ”. Make sure the place-
holder is selected.

■ Click on the Programming toolbar.
Alternatively, press] . You’ll see a vertical
bar with two placeholders, which will hold
the statements comprising your program.

■ Click in the top placeholder. Type z , then
click on the Programming toolbar.
Alternatively, press { to insert a “←.”

■ Type x/w in the placeholder to the right of
the “←.” Then press [Tab] to move to the
bottom placeholder.

■ Enter the value to be returned by the program
in the remaining placeholder. Type log(z) .

f x w,() x
w

 log=
302 Chapter 15 Programming Pro

eet.

e the
ment

fined

ugh
 half
 as

ected.

ply
ssion
 of

 and,
bility
s,
mbol-

Mathcad Users Guide.book Page 303 Sunday, August 9, 1998 2:59 PM
You can now use this function just as you would any other function in your worksh

Note You cannot use Mathcad’s usual assignment operator “:=” inside a program; you must us
local assignment operator instead. Variables defined inside a program with the local assign
operator “←,” such as z in the example above, are local to the program and are undefined
elsewhere in the worksheet. However, you can refer to Mathcad variables and functions de
previously in the worksheet within a program.

Figure 15-1 shows a more complex example involving the quadratic formula. Altho
you can define the quadratic formula with a single statement as shown in the top
of the figure, you may find it easier to define it with a series of simple statements
shown in the bottom half.

Figure 15-1: A more complex function defined in terms of both an expression
and a program.

Tip A program can have any number of statements. To add a statement, click on the
Programming toolbar. Mathcad inserts a placeholder below whatever statement you’ve sel
To delete the placeholder, click on it and press [Bksp].

As with any expression, a Mathcad program must have a value. This value is sim
the value of the last statement executed by the program. It could be a string expre
or a single number, or it could be an array of numbers. It could even be an array
arrays (see “Nested arrays” on page 233).

You can also write a Mathcad program to return a symbolic expression. When you
evaluate a program using the live symbolic equal sign, “→,” described in Chapter 14,
“Symbolic Calculation,” Mathcad passes the expression to its symbolic processor
when possible, returns a simplified symbolic expression. You can use Mathcad’s a
to evaluate programs symbolically to generate complicated symbolic expression
polynomials, and matrices. Figure 15-2 shows a function that, when evaluated sy
ically, generates symbolic polynomials.
Pro Defining a program 303

nize

 to

There
en a

d the

Mathcad Users Guide.book Page 304 Sunday, August 9, 1998 2:59 PM
Note Programs that include the return and on error statements, described on page 308 and
page 310, cannot be evaluated symbolically since the symbolic processor does not recog
these operators.

Figure 15-2: Using a Mathcad program to generate a symbolic expression.

On-line Help For programming examples, see the “Programming” section in the Resource Center
QuickSheets. The Resource Center also includes a special section, “The Treasury Guide
Programming,” which provides detailed examples and applications of Mathcad programs.

Conditional statements

In general, Mathcad evaluates each statement in your program from the top down.
may be times, however, when you want Mathcad to evaluate a statement only wh
particular condition is met. You can do this by including an if statement.

For example, suppose you want to define a function that forms a semicircle aroun
origin but is otherwise constant. To do this:

■ Type the left side of the function definition,
followed by a “:= ”. Make sure the place-
holder is selected.
304 Chapter 15 Programming Pro

Mathcad Users Guide.book Page 305 Sunday, August 9, 1998 2:59 PM
■ Click on the Programming toolbar.
Alternatively, press] . You’ll see a vertical
bar with two placeholders. These placehold-
ers will hold the statements making up your
program.

■ Click on the Programming toolbar in
the top placeholder. Alternatively, press } .
Do not type “if.”

■ Enter a Boolean expression in the right place-
holder using one of the relational operators
on the Evaluation toolbar. In the left place-
holder, type the value you want the expres-
sion to take whenever the expression in the
right placeholder is true. If necessary, add
more placeholders by clicking .

■ Select the remaining placeholder and click
 on the Programming toolbar.

■ Type the value you want the program to
return if the condition in the first statement is
not met.

Figure 15-3 shows a plot of this function.

Figure 15-3: Using the if statement to define a piecewise continuous function.
Pro Conditional statements 305

g the

ce of
ce of

ow

in

ation

Mathcad Users Guide.book Page 306 Sunday, August 9, 1998 2:59 PM
Note The if statement in a Mathcad program is not the same as the if function (see “Piecewise
continuous functions” on page 177). Although it is not hard to define a simple program usin
if function, as shown in Figure 15-3, the if function can become unwieldy as the number of
branches exceeds two.

Looping

One of the greatest strengths of programmability is the ability to execute a sequen
statements repeatedly in a loop. Mathcad provides two loop structures. The choi
which loop to use depends on how you plan to tell the loop to stop executing.

■ If you know exactly how many times a loop is to execute, use a for loop.

■ If you want the loop to stop upon the occurrence of a condition, but you don’t kn
how many loops will be required, use a while loop.

Tip See “Controlling program execution” on page 308 for methods to interrupt calculation with
the body of a loop.

“for” loops

A for loop is a loop that terminates after a predetermined number of iterations. Iter
is controlled by an iteration variable defined at the top of the loop. The definition of
the iteration variable is entirely local to the program.

To create a for loop:

■ Click on the Programming toolbar.
Do not type the word “for.”

■ Type the name of the iteration variable in the
placeholder to the left of the “∈.”

■ Enter the range of values the iteration vari-
able should take in the placeholder to the right
of the “∈.” You usually specify this range the
same way you would for a range variable (see
page 125).
306 Chapter 15 Programming Pro

st
s an

eed
r, to
, that

Mathcad Users Guide.book Page 307 Sunday, August 9, 1998 2:59 PM
■ Type the expression you want to evaluate in
the remaining placeholder. This expression
generally involves the iteration variable. If
necessary, add placeholders by clicking

 on the Programming toolbar.

The upper half of Figure 15-4 shows this for loop being used to add a sequence of integers.

Note Although the expression to the right of the “∈” is usually a range, it can also be a vector or a li
of scalars, ranges, and vectors separated by commas. The lower half of Figure 15-4 show
example in which the iteration variable is defined as the elements of two vectors.

Figure 15-4: Using a for loop with two different kinds of iteration variables.

“while” loops

A while loop is driven by the truth of some condition. Because of this, you don’t n
to know in advance how many times the loop will execute. It is important, howeve
have a statement somewhere, either within the loop or elsewhere in the program
eventually makes the condition false. Otherwise, the loop executes indefinitely.

To create a while loop:

■ Click on the Programming toolbar.
Do not type the word “while.”

■ Click in the top placeholder and type a con-
dition. This is typically a Boolean expression
like the one shown.
Pro Looping 307

ering
utes
cad

oop.

thin

Mathcad Users Guide.book Page 308 Sunday, August 9, 1998 2:59 PM
■ Type the expression you want evaluated in
the remaining placeholder. If necessary, add
placeholders by clicking on the Pro-
gramming toolbar.

Figure 15-5 shows a larger program incorporating the above loop. Upon encount
a while loop, Mathcad checks the condition. If the condition is true, Mathcad exec
the body of the loop and checks the condition again. If the condition is false, Math
exits the loop.

Figure 15-5: Using a while loop to find the first occurrence of a particular
number in a matrix.

Controlling program execution

The Programming toolbar in Mathcad Professional includes three statements for
controlling program execution:

■ Use the break statement within a for or while loop to interrupt the loop when a
condition occurs and move execution to the next statement outside the loop.

■ Use the continue statement within a for or while loop to interrupt the current
iteration and force program execution to continue with the next iteration of the l

■ Use the return statement to stop a program and return a particular value from wi
the program rather than from the last statement evaluated.
308 Chapter 15 Programming Pro

or

on

ram.
. As

Mathcad Users Guide.book Page 309 Sunday, August 9, 1998 2:59 PM
The “break” statement

It is often useful to break out of a loop upon the occurrence of some condition. F
example, in Figure 15-6 a break statement is used to stop a loop when a negative
number is encountered in an input vector.

To insert a break statement, click on a placeholder inside a loop and click
the Programming toolbar. Do not type the word “break.” You typically insert break
into the left-hand placeholder of an if statement. The break is evaluated only when the
right-hand side of the if is true.

Tip To create the program in Figure 15-6, for example, you would click first, then click
.

The “continue” statement

To ignore an iteration of a loop, use continue . For example, in Figure 15-6 a continue
statement is used to ignore nonpositive numbers in an input vector.

To insert the continue statement, click on a placeholder inside a loop and click
on the Programming toolbar. Do not type the word “continue.” As with break , you
typically insert continue into the left-hand placeholder of an if statement. The
continue statement is evaluated only when the right-hand side of the if is true.

Figure 15-6: The break statement halts the loop, but execution resumes on
the next iteration when continue is used.

The “return” statement

A Mathcad program returns the value of the last expression evaluated in the prog
In simple programs, the last expression evaluated is in the last line of the program
Pro Controlling program execution 309

than

ested
ing.

the

g the
ivide

athcad
sion
olor,

Mathcad Users Guide.book Page 310 Sunday, August 9, 1998 2:59 PM
you create more complicated programs, you may need more flexibility. The return
statement allows you to interrupt the program and return particular values other
the default value.

A return statement can be used anywhere in a program, even within a deeply n
loop, to force program termination and the return of a scalar, vector, array, or str
As with break and continue , you typically use return on the left-hand side of an if
statement, and the return statement is evaluated only when the right-hand side of
if is true.

The following program fragment shows how a return statement is used to return a
string upon the occurrence of a particular condition:

■ Click on the Programming toolbar.

■ Now click on the Programming tool-
bar. Do not type “return.”

■ Create a string by typing the double-quote
key (") on the placeholder to the right of
return . Then type the string to be returned
by the program. Mathcad displays the string
between a pair of quotes.

■ Type a condition in the placeholder to the
right of if . This is typically a Boolean expres-
sion like the one shown. (Type [Ctrl]= for
the bold equal sign.)

In this example, the program returns the string “int” when the expression
is true.

Tip You can add more lines to the expression to the right of return by clicking on the
Programming toolbar.

Error handling

Errors may occur during program execution that cause Mathcad to stop calculatin
program. For example, because of a particular input, a program may attempt to d
by 0 in an expression and therefore encounter a singularity error. In these cases M
treats the program as it does any math expression: it marks the offending expres
with an error message and highlights the offending name or operator in a different c
as described in Chapter 8, “Calculating in Mathcad.”

floor x() x=
310 Chapter 15 Programming Pro

ms:

ical

nd

rical
e
when
set,
s that
ror
uld

e
)
ors.
te

.

iate
7 for
r when
rs.

Mathcad Users Guide.book Page 311 Sunday, August 9, 1998 2:59 PM
Mathcad Professional gives you two features to improve error handling in progra

■ The on error statement on the Programming toolbar allows you to trap a numer
error that would otherwise force Mathcad to stop calculating the program.

■ The error string function gives you access to Mathcad’s error tip mechanism a
lets you customize error messages issued by your program.

“on error” statement

In some cases you may be able to anticipate program inputs that lead to a nume
error (such as a singularity, an overflow, or a failure to converge) that would forc
Mathcad to stop calculating the program. In more complicated cases, especially
your programs rely heavily on Mathcad’s numerical operators or built-in function
you may not be able to anticipate or enumerate all of the possible numerical error
can occur in a program. The on error statement is designed as a general-purpose er
trap to compute an alternative expression when a numerical error occurs that wo
otherwise force Mathcad to stop calculating the program.

To use the on error statement, click on the Programming toolbar. Do not typ
“on error.” In the placeholder to the right of on error , create the program statement(s
you ordinarily expect to evaluate but in which you wish to trap any numerical err
In the placeholder to the left create the program statement(s) you want to evalua
should the default expression on the right-hand side fail.

Figure 15-7 shows on error operating in a program to find a root of an expression

Figure 15-7: The on error statement traps numerical errors in a program.

Issuing error messages

Just as Mathcad automatically stops further evaluation and produces an appropr
“error tip” on an expression that generates an error (see the bottom of Figure 15-
an example), you can cause evaluation to stop and make custom error tips appea
your programs or other expressions are used improperly or cannot return answe
Pro Error handling 311

,
n of
s an

ate

ses
rams.

wing

u can
re a

elf a

Mathcad Users Guide.book Page 312 Sunday, August 9, 1998 2:59 PM
Mathcad Professional’s error string function gives you this capability. This function
described in “String functions” on page 213, suspends further numerical evaluatio
an expression and produces an error tip whose text is simply the string it takes a
argument. Typically you use the error string function in the placeholder on the left-
hand side of an if or on error programming statement so that an error and appropri
error tip are generated when a particular condition is encountered.

Figure 15-8 shows how custom errors can be used even in a small program.

Figure 15-8: Generating custom errors via the error string function.

Programs within programs

The examples in previous sections have been chosen more for illustrative purpo
rather than their power. This section shows examples of more sophisticated prog

Much of the flexibility inherent in programming arises from the ability to embed
programming structures inside one another. In Mathcad, you can do this in the follo
ways:

■ You can make one of the statements in a program be another program, or yo
define a program elsewhere and call it from within another program as if it we
subroutine.

■ You can define a function recursively.

Subroutines

Figure 15-9 shows two examples of programs containing a statement which is its
program. In principle, there is no limit to how deeply nested a program can be.
312 Chapter 15 Programming Pro

s and
tand at

Mathcad Users Guide.book Page 313 Sunday, August 9, 1998 2:59 PM
Figure 15-9: Programs in which statements are themselves programs.

One way many programmers avoid overly complicated programs is to bury the
complexity in subroutines. Figure 15-10 shows an example of this technique.

Tip Breaking up long programs with subroutines is good programming practice. Long program
those containing deeply nested statements can become difficult for other users to unders
a glance. They are also more cumbersome to edit and debug.

Figure 15-10: Using a subroutine to manage complexity.
Pro Programs within programs 313

ing

.

in

e

tive

Mathcad Users Guide.book Page 314 Sunday, August 9, 1998 2:59 PM
The function adapt carries out an adaptive quadrature or integration routine by us
intsimp to approximate the area in each subinterval. By defining intsimp elsewhere and
using it within adapt, the program used to define adapt becomes considerably simpler

Recursion

Recursion is a powerful programming technique that involves defining a function
terms of itself, as shown in Figure 15-11. See also the definition of adapt in Figure 15-
10. Recursive function definitions should always have at least two parts:

■ A definition of the function in terms of a previous value of the function.

■ An initial condition to prevent the recursion from going forever.

The idea is similar to that underlying mathematical induction: if you can determin
 from , and you know , then you know all there is to know aboutf.

Tip Recursive function definitions, despite their elegance and conciseness, are not always
computationally efficient. You may find that an equivalent definition using one of the itera
loops described earlier will evaluate more quickly.

Figure 15-11: Defining functions recursively.

f n 1+() f n() f 0()
314 Chapter 15 Programming Pro

	Chapter 15
	Programming
	Defining a program
	Conditional statements
	Looping
	“for” loops
	“while” loops

	Controlling program execution
	The “break” statement
	The “continue” statement
	The “return” statement

	Error handling
	“on error” statement
	Issuing error messages

	Programs within programs
	Subroutines
	Recursion

